
Soft USB Controller Design Challenges

Lane Hauck
Systems Engineering Manager

Anchor Chips Inc.

Implementing peripheral solutions for an emerging bus standard such as USB can be
challenging. Peripheral developers must be responsive to external, co-developed events.
For USB, these include functionality with various host platforms (using different chip
sets and BIOS), various releases of the host's operating system, and a continual evolution
of peripheral device classes. A good way to accommodate USB development changes is
to created USB controller chips that operate "soft", that is from code downloaded from
the host computer into on-chip RAM, rather than using the traditional ROM approach.

On the surface it may seem an easy matter to download code over the USB and then
execute the code to function as a USB peripheral device. But the USB Specification
allows a device to enumerate only once, so there is an inherent conflict between the
device that downloads code and the resultant device that executes the custom application.
This paper describes the problem in detail and outlines the novel solution embodied in the
EZ-USB chip family.

The Objective: SOFT

USB
Function
Traffic

Enhanced
8051
Core

3.3V, 24 MHz,
4-clock cycle

Program
and
Data
RAM

I/O

Here’s the objective—a soft, single-chip USB peripheral solution. One side of the device
receives and sends USB traffic, while the other side interfaces to the device’s peripheral
circuitry. Program code and data are stored in volatile RAM, which is downloaded from
the host via the USB channel.

When the chip powers on, there is no code in RAM and the CPU is held in reset. To
understand the requirements of a “soft” architecture, it is helpful to review the anatomy
of a USB peripheral device from the inside out. Then the special measures required to
implement the soft feature will be apparent.

The B a s ic US B Interface

Serial
Interface
Engine
(SIE)

D+

D-

Bytes

USB
Tranceiver

Inside every USB peripheral is a Serial Interface Engine (SIE). The SIE:

• Serializes and de-serializes USB data.
• Decodes the NRZI format used by USB.
• Transfers bytes to and from the device.
• Handles bit stuffing.
• Checks the USB data for validity using CRC fields.
• Handles bus signaling like reset, suspend and resume.
• Re-tries certain USB transfers if errors are encountered.

The SIE is roughly analogous to the UART chip connected to a serial port. Serial data
enters and leaves the SIE, and parallel bytes are delivered to, and accepted from, the
peripheral. However, USB is much more complex than a serial port. The two examples
that follow illustrate some of the added complexity.

What t he SIE Does

Serial
Interface
Engine
(SIE)

D+

D-

USB
Tranceiver

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

H/S Pkt

Payload
Data

Payload
Data

A
C
K

Here’s a simple example of what the SIE does. USB traffic is shown at the top, with time
traveling from left to right. This transaction represents a USB Bulk data transfer.

A USB transaction consists of data packets that are identified by special codes called
Packet ID’s (PIDS). The bulk transfer shown above uses four PID types: OUT, DATA0,
DATA1, and ACK.

The first packet is an OUT token, announcing that the host is about to send data to the
peripheral (USB direction is host-centric, OUT means host to device). The second packet
contains the DATA1 PID followed by a block of bytes labeled “Payload Data”. The
device indicates successful receipt of the data by sending the ACK PID in the third,
handshake packet. The host then sends another OUT token, this time using the DATA0
PID, followed by more data. Finally, the devices sends another ACK to conclude the
transfer.

The two data PIDS, DATA0 and DATA1, provide added data security beyond CRC
checking to guard against corrupted handshake packets, and to maintain synchronism
throughout long bulk transfers. Bulk data is transferred using alternating DATA0/1
PIDS. The host and peripheral maintain “data toggle” bits that are complemented when
data is successfully sent and acknowledged. If either side fails to read a correct
handshake, it does not flip its data toggle, causing a mis-match with the next data PID.
This initiates a re-try. All of this is handled automatically by the SIE.

A USB Cont rol Transfer

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

8
bytes
Setup
Data

C
R
C
1
6

Data Packet

S
Y
N
C

H/S Pkt

S
Y
N
C

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

H/S Pkt

SETUP Stage

DATA Stage

STATUS Stage

S
Y
N
C

D
A
T
A
1

Data Packet

S
Y
N
C

H/S Pkt

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

H/S Pkt

Serial
Interface
Engine
(SIE)

8
bytes
Setup
Data

Payload
Data

Payload
Data

intelligence

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

Here’s a more complex SIE illustration, which demonstrates processing performed by the
USB protocol layer. The protocol layer uses the SIE to respond to standard USB
requests. The protocol layer can be implemented in logic or with the aid of a CPU. This
figure shows a protocol layer transaction called a CONTROL transfer.

CONTROL transfers consist of two stages, SETUP and STATUS, and an optional third
data stage. This example uses a data stage. The “Intelligence” block first decodes the
host request using the eight Setup Data bytes delivered by the SIE. In this example, the
host has requested data from the peripheral. The “Intelligence” block decodes the request
from the eight SETUP bytes, retrieves the requested data from internal memory,
constructs packets of the proper size, and sends them back through the SIE for USB
transmission. After the data has been transferred, the “Intelligence” block commands the
SIE to ACK the STATUS phase to conclude the control transfer.

When a device is first attached to USB, it answers a series of host requests during a
process called “enumeration”. During enumeration the device tells the host about its
capabilities and requirements. The CONTROL transfer shown above is typical of the
USB traffic during enumeration.

In a soft controller, the program RAM powers on in an unknown state, so the on-chip
CPU is not available to perform the “Intelligence” function described above. Therefore,
the SIE must be enhanced to handle enumeration without using the CPU.

EZ-USB Enhanced SIE

Serial
Interface
Engine
(SIE)

intelligence

Anchor Chips
Enhanced SIE

Full
Device

Enumeration

The intelligence to fully enumerate as a USB device is incorporated into the SIE logic.
This “Enhanced SIE” contains hard-coded descriptor tables to identify it as an “Anchor
Generic” device. These descriptors instruct the operating system to load the correct
driver to operate the device. The Anchor Generic device contains the following sets of
USB endpoints:

Endpoint Type
Alternate Setting

0 1 2
Max Packet Size (bytes)

0 CTL 64 64 64
1 IN INT 0 16 64
2 IN BULK 0 64 64
2 OUT BULK 0 64 64
4 IN BULK 0 64 64
4 OUT BULK 0 64 64
6 IN BULK 0 64 64
6 OUT BULK 0 64 64
8 IN ISO 0 16 256
8 OUT ISO 0 16 256
9 IN ISO 0 16 16
9 OUT ISO 0 16 16
10 IN ISO 0 16 16
10 OUT ISO 0 16 16

Having a default set of endpoints simplifies the USB learning curve, since USB transfers
can be programmed and studied starting with a fully functional USB device.

AN213 1Q Mem o ry Map

Endpoint 0 IN
Endpoint 0 OUT

Endpoint 1 IN

Endpoint 1 OUT
Endpoint 2 IN

Endpoint 2 OUT

Endpoint 3 IN
Endpoint 3 OUT

Endpoint 4 IN
Endpoint 4 OUT

Endpoint 5 IN

Endpoint 5 OUT
Endpoint 6 IN

Endpoint 6 OUT

Endpoint 7 IN
Endpoint 7 OUT

EZ-USB regs

6.5K RAM

1024
bytes
Bulk

Endpoint
Buffers

0000

1B40

1F3F

2000 1024 Bytes
Isochronous

FIFOS

1024 Bytes
Isochronous

FIFOS

SOF

USB

Endpoint 0 control
Endpoints 1-7 bulk/interrupt
Endpoints 8-15 isochronous

All 31 USB endpoints are
available

USB

The preceding table of default endpoints is actually a subset of the 31 endpoints available
in the AN2131Q. The CPU firmware reports the desired endpoints to the host via
descriptor tables, and enables the desired endpoints.

Advanced SIE En umerates & Loads Code

Serial
Interface
Engine
(SIE)

intelligence

Anchor Chips
Enhanced SIE

Full
Device

Enumeration

Enhanced
8051
Core

3.3V, 24 MHz,
4-clock cycle

Program
and
Data
RAM

Download
 & Upload

Code

It’s not enough just to enumerate. The Enhanced SIE must also download code into on-
chip RAM for operation as the final USB device. The Enhanced SIE accomplishes this
by decoding a vendor-specific request that downloads code into internal RAM. This
request is handled over endpoint zero, the default CONTROL endpoint. The eight setup
bytes that define the “Anchor Download” are shown below:

Byte Field Value Meaning
0 bmRequest 0x40 Vendor Request, OUT
1 bRequest 0xA0 “Anchor Load”
2 wValueL AddrL Starting address
3 wValueH AddrH
4 wIndexL 0x00
5 wIndexH 0x00
6 wLengthL LenL Number of Bytes
7 wLengthH LenH

F in a l US B Device

intelligence

intelligence

Anchor Chips
Enhanced SIE

USB
Function
Traffic

Enhanced
8051
Core

3.3V, 24 MHz,
4-clock cycle

Program
and
Data
RAM

Serial
Interface
Engine
(SIE)

intelligence

Anchor Chips
Enhanced SIE

I/O

Once the code is loaded and the CPU is brought out of reset, the final USB device is
operational. Now the CPU is in charge. The CPU handles the USB device requests that
were initially fielded by the enhanced SIE. Because the CPU has access to the added SIE
intelligence, the firmware is simplified. In effect, the enhanced SIE becomes a high level
engine for USB requests.

The ReNum era t io n TM P roces s

Host PC
recognizes device
attachment, starts

Enumeration
process

Host PC loads
loader driver,
which loads

firmware and
descriptors into
device from a
software file

EZ-USB Core
provides device
descriptors to

identify the loader
driver.

Host PC

Your Peripheral Device

There’s a hitch. USB allows a device to enumerate only once. The three steps shown
above accomplish the enumeration that configures the soft USB controller as a loader,
capable of downloading the final device personality into internal RAM. But once the
RAM is loaded with the descriptors and code that define the final device, it’s too late to
connect to USB as the final device.

The ReNum era t io n TM P roces s

The Magic
Happens

Host PC
recognizes device
attachment, starts

Enumeration
process

Final USB device.
EZ-USB CPU

services USB and
provides device

functionality

Host PC loads
loader driver,
which loads

firmware and
descriptors into
device from a
software file

Host PC
Enumerates
again, loads
device driver

EZ-USB Core
provides device
descriptors to

identify the loader
driver.

Host PC

Your Peripheral Device

The device needs to enumerate a second time, or ReNumerate™. Then the final device
driver is loaded, the device contains all firmware and descriptors, and our soft controller
is in business.

DISCON#

EZ-USB

D-
D+

5V

GND

To 3.3V Regulator

1
2
3
4

1500

The “magic” is simple. A USB hub detects a high-speed device by the presence of a
1500 ohm pullup resistor connected to the D+ line. (The hub has a 15 Kohm pulldown
which keeps the line low when nothing is connected.)

The DISCON# pin either drives to the 3.3V rail or floats, under control of a CPU register
bit. This emulates a physical disconnect and reconnect while maintaining power to the
device. Once re-connected, the USB device enumerates using the downloaded code and
descriptors. The entire enumerate-ReNumerate™ process happens in about one second.

G et Desc riptor-Convent iona l Method

CPU copies FIFO data to RAM, decodes
"Get Descriptor" Request

USB Setup data copied to FIFO

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

D
A
T
A
1

Data Packet

S
Y
N
C

A
C
K

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

SETUP Stage

DATA Stage

STATUS Stage

Endpoint
FIFO

Descriptor
Data TableEndpoint

FIFO

1 2

4 5
3

6

1

2

3

4

5

6

CPU transfers first packet of data from
memory to endpoint FIFO.

FIFO Data sent in response to USB IN
token

CPU Transfers next packet of data from
memory to endpoint FIFO.

FIFO Data sent in response to USB IN
token

7 Repeat steps 5-6 as necessary.

8-byte
SETUP data

buffer

H/S Pkt

Once ReNumerated, the CPU can take advantage of the enhanced SIE to simplify the
firmware needed to service USB device requests. The figure illustrates a typical device
request called “Get_Descriptor”.

Most USB peripheral chips handle the “Get_Descriptor” in the manner shown. The CPU
transfers the eight setup bytes from an endpoint FIFO to RAM to decode the request
(1,2). Then the CPU fetches the requested data from internal RAM, packetizes it, and
loads it into an endpoint FIFO for USB transmission (3-6). The CPU must keep track of
the three stages of the control transfer, usually by maintaining a firmware state machine.

G et Desc riptor-Enhanced S IE Method

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

D
A
T
A
1

Data Packet

S
Y
N
C

A
C
K

S
Y
N
C

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

S
Y
N
C

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

A
C
K

H/S Pkt

S
Y
N
C

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

SETUP Stage

DATA Stage

STATUS Stage

8-byte
SETUP data

buffer

1

8051 sets pointer to descriptor table in RAM,
EZ-USB core does entire multi-packet transfer.

EZ-USB core copies Setup data directly to RAM,
eliminating the FIFO-to-RAM copy step. 8051
decodes the "Get Descriptor" request.

1

2

Descriptor
Data Table

2

H/S Pkt

Because the enhanced SIE contains logic to handle the Get_Descriptor request, the CPU
can take advantage of this added hardware to respond to its own requests.

As in the conventional method, the CPU decodes the request, although it accesses the
eight setup bytes directly in memory, saving the FIFO-to-memory transfer. Then the
CPU simply loads the address of the requested descriptor table into a control register.
The Enhanced SIE does the rest.

Watch Thos e VID-P ID-DIDs

EZ-USB

USB
PC

Loads Anchor
Chips Driver

EZ-USB

Device ID (DID)

Product ID (PID)

Vendor ID (VID)

Serial EEPROM

USB
PC

Loads Device-Specific
Driver

Device ID (DID)

Product ID (PID)

VID = 0547

(a) "Anchor Generic" Enumeration

(b) Custom Device Enumeration

In Anchor Generic mode, six bytes of descriptor information “tag” the device to an OS
driver. To allow different vendors to customize their own drivers, a small (16 byte)
EEPROM attaches to the EZ-USB chip to provide custom VID-PID-DID information.
This allows the device manufacturer to write a single driver which incorporates the
loader.

AN213 1Q Fa s t Tra n s fer Modes

Accumulator

DPTR ISO OUT FIFO

FWR#

m
o

vx
 a

,@
d

p
tr

D[7..0]

External FIFO
or ASIC

Accumulator

DPTR ISO IN FIFO

D[7..0]

m
o

vx
 @

d
p

tr
,a

FRD#
External FIFO

or ASIC

It’s important to insure that the CPU keeps up with USB rates when it transfers data to
and from the peripheral (for example an external FIFO). A “turbo” mode monitors
transfers between the 8051 accumulator and endpoint FIFOS and buffers. When enabled,
USB data is transferred directly to the AN2131Q data bus, and fast strobes FRD# and
FWR# are generated.

Fa s t Tra n s fers t o a n External FIFO

Here is an isochronous transfer of 1008 bytes, transferred from an OUT endpoint to an
external FIFO, and then looped back to an IN endpoint.

Expanding the AN2131Q

AN2131Q

PORTA (8)

PORTC (8)

PORTB (8)

Data (8)

RD#
WR#

I2C

regOUT Pin

PIN

OE

Alternate Function

Address (16)

The AN2131Q has a non-multiplexed address bus, an 8-bit data bus, and three 8-bit IO
ports. Each IO pin has an alternate function, for example the Fast Read (FRD#) and Fast
Write (FWR#) strobes shown in the previous figure.

